Top 25 Generative AI Use Cases in 2023

Top 25 Generative AI Use Cases in 2023

 

Top 25 Generative AI Use Cases

The days are gone when humans were the only intelligent species that could comprehend information and make a judgment or take action. Now we have a whole new species of tech that has the potential to do the same but with extraordinary capabilities. Yes, we are speaking non-other than Generative AI, the new sizzling sensation emerging as one of the greatest technologies.

This AI can generate data that can provide n number of benefits. From real-time image, video, and art creation to gene sequencing, it provides endless applications. As we enter 2023, the possibilities of this revolutionary AI are becoming endless, with plenty of exceptional use cases being discovered every day for every sector.

To give you a broader perspective of its applications, we have listed some of the top 25 use cases of generative AI in 2023 that are worth checking out. So let’s get things going.

Read Also: SoluLab Launches Generative AI Consulting and Development Services

What is Generative AI?

Traditional AI and Generative AI are much different. The traditional AI’s abilities were limited to detecting patterns, making decisions, performing accurate analytics, and predicting flaws and improvements. Whereas the generative refers to nothing but data generation and is used for that exact purpose to generate text, audio, video, and other media. 

How it Works

The success story of generative AI follows two machine-learning classes

  • Generative system- The one that generates text, video, audio, and other media using computer-controlled systems.
  • Discriminative system-  The one that draws the boundary between what is fake and real such as mistakes in texts, people in pictures, etc.
Toptal

Image Credit: Toptal

Both generative and discriminative systems are built on top of neural networks, and once the input is given, they produce a decent output. Further, based on the feedback on how good the output was, both generative and discriminative systems modify their internal operations and structure to produce the feedback-oriented output, as shown in the above image.

Today’s generative AI tools, such as ChatGPT, combines these two AI classes in the GAN (generative adversarial network) model, where different AIs help train and improve the performance and output of both systems to each other, resulting in a powerful machine learning model that learns, adapts and evolves with new information.

For instance, these GANs can be used to create realistic images where generative systems could synthesize the images. Meanwhile, a person could pass real images through a discriminative system to predict which is fake and which is not, ultimately training both models to perfection.

Generative AI Use Cases

Generative AI has endless possibilities and uses cases in every sector because this technology evolves as the sector advances, causing new ways to emerge and further enhancing their operations. On top of it, this technology improves personal experiences and even streamlines the workflows of researchers, engineers, creative artists, and scientists.

With upcoming advancements, it’s predicted that generative AI will transcend unlike any other technology and serve real-time use cases within each industry.

Generative AI Use Cases

Image Credit: Nvidia, possible generative AI use cases within each category

Top 25 Generative AI Use Cases

Visual 

1. Image Synthesis

The generative AI has the power to convert text into images; for instance, the Dall-e tool soon became the choice of many to generate artistic images. These image synthesis tools let the user write prompts on what he wants in the image, for instance, type of art, color choice, details of the scene, location, etc., by which the image synthesis tools such as Dall-e generate the exact visual materials.

Now this might not be useful for a general user, but it could benefit marketing, sales, education, media, design, and advertising sectors to use these image synthesis tools for commercial operations.

The below image is an example of image synthesis; generated by Dall-e.

Image synthesis; generated by Dall-e

Image Credit: Dall-e

2. Super-Resolution

Super-resolution refers to a process where blurry images are processed and turned into high-quality images by introducing pixels with accurate color around the blurry areas of the image.

Generative AI possesses the same capability of enhancing images as it generates new data based on existing ones; this means the GAN model can utilize the generative and discriminative system to generate new pixels based on the existing image’s data, resulting in high-quality images.

This benefits an average user’s demands where he could easily turn his past blurry images into high-quality ones. Moreover, it is beneficial for medical use to get detailed imagery of organs for proper diagnosis and treatment.

3. Image-To-Photo Translation

Image-to-image or image-to-photo translation is a method of converting a semantic sketch or image into a realistic one. This is done exactly through the same generator and discriminator in the GAN model.

Using these tools, a person can draw sketches and get the realistic images he wants. For instance, healthcare professionals can use this tool to diagnose a patient, and police can use this tool to get variations of real images of a criminal to hunt him down.

DeepFaceDrawing

Image Credit: DeepFaceDrawing Research Paper: Deep Generation of Face Images from Sketches

4. Video Prediction

As the name suggests, video prediction is nothing but predicting the anomalies in the video. Using the video-based GAN prediction model, the generative AI can comprehend temporal and spatial elements present in the video, generate patterns or sequences based on the video data, and determine the probable situation that might happen.

This is useful in traffic surveillance cameras to identify accident areas.

Text

5. Text Generation and Personalized Content Creation

Having trained over huge volumes of data sets, generative AI tools such as ChatGPT can now generate texts by following proper grammar, tense, and wording rules. This generated content is most beneficial for companies, such as for marketing propaganda to generate ads, social media posts, and scripts for marketing purposes.

A user working in the company can even personalize the content, for example, by writing a prompt that specifies its type, audience, and tone. For instance, the personalized content could be articles, any other website post, a recommendation list of products, softwares, etc.

6. Sentiment Analysis, Text Classification

Since the rise of generative AI, humans are no longer the only ones who can understand the emotions hidden in words, that’s right Generative AI can do this too, and it’s known as sentiment analysis. 

It is also known as opinion mining and relies on NLP and text mining to identify the emotional context hidden within the words and accordingly categories/label them in three categories; positive, negative, or neutral.

Furthermore, a person can even command a generative AI tool to write words with certain sentiments, such as expressing appreciation, condemning any activity, etc.

This is mostly useful for companies where they can introduce a support chatbot to answer customer queries and experiences. For instance, if the customer expresses product defectiveness, the chatbot can automatically answer in a tone that shows appreciation and also pitch apologetic sentences to retain customers. This makes companies emotionally involved with the customers to get their attention and avoid losing them, especially when they do something wrong.

Harness The Power Of Generative AI For Business Growth

7. Code Generation, Review, Debugging, and Style Check

Code generation is another capability of generative AIs. Tools such as ChatGPT and others have shown their potential to write accurate codes for specific programs. This means professionals no longer have to worry about programs that must be added repeatedly; instead, generative AI can do that job. 

Moreover, the AI tools can help review the codes to identify flaws, debug programs, refract codes, and style checking to properly structure codes as per standards.

8. Data synthesis

The generative AI can create data statistically similar to any real-world data; however, it doesn’t show any real-world parameters but can be used to train ML models, ensuring data privacy and creating new data from the customer’s inputs.

Audio

9. Text-To-Speech Generator

Text-to-speech has been used for decades now, but it always has produced unnatural voices, which never really made any sense. However, with GAN and generative AI, text-to-speech is much more natural and sounds like a human.

A person can simply write the script and get an engaging human voice. This could benefit various media, education, podcasting, video generation, and marketing businesses, as they can create appealing content to attract potential audiences.

10. Music Generation 

Music generation is another use case that generative AI has. AI-powered music generation tools can create music just how a user wants by specifying its genre, culture, and type.  This will mostly benefit the media and entertainment industry as they can create sounds and music for ads, video intros, outros, and other video and audio content.

Industry-Specific Use Cases

Healthcare

11. Drug Discovery And Development

Generative AI can create drug candidates for clinical trials to test the efficacy with computer simulation to accelerate the process of discovering and developing new drugs for critical diseases. 

This all started when Exscientia brought an AI-designed drug candidate to a clinical trial in 2021; from that day, many other companies are also considering AI-designed drug candidates for specific clinical trials.

12. Genetics Research

We often criticize that AI will take over the world and often forget the good part it offers, and one of them is genetic research. Generative AIs have become widely used in gene research, where they help researchers find out how gene expression will change in response to specific changes in genes. This helps reduce the time taken to research and accelerates the development of gene therapies, and even enhances the therapy and treatment by predicting which treatment the patient’s genes best respond to.

13. Enhanced Medical Imaging

Generative AI is now being considered for medical imaging such as CT scan that predicts the inner anomalies of a human body. By utilizing the power of machine learning algorithms, medical imaging is done much more accurately, which helps with the proper diagnosis.

Enhanced Medical Imaging

Image Credit: Generative Adversarial Networks And Synthetic Patient Data: Current Challenges And Future Perspectives, NCBI

Fashion

14. Creative Fashion Designing For Designers

Generative AI tools such as Dall-e can generate images that just look real; similarly, there are other tools emerging in the fashion domain that generate creative fashion designs for designers to keep up with the trending fashion. 

It also helps fashion designers to add new resources in generative AI models to optimize their choice of design further.

15. Generating Fashion Model

Fashion brands require fashion models who could portray their clothing; however, it is a time-consuming process involving properly sized clothing, various photoshoots, and finally, showcasing their fashionable clothing. 

Generative AI is simplifying this tedious process with a tool to generate fashion models. The fashion brand can easily render 3D models to showcase their fashionable clothing better.

16. Fashion Industry Market And Trend Analysis 

The generative AI tools can be configured to know the customer’s personalized choices, which then helps understand their changing clothing demands. Here machine learning and probabilistic programming can play a key role in determining customer desires and generating personalized choices of designs and products for targeted customers. 

By analyzing the trends, the brands can also ask generative AI tools to build strategies for marketing purposes, such as email marketing to push personalized fashionable clothing insights for each target audience.  Similarly, this marketing strategy can be used on social and websites to get customers’ attention and increase sales.

Education

17. Personalized Lessons, Course Planning, And Design

Generative AI tools can suggest personalized lessons for students based on their previous track record and performance for effective and tailored education. Moreover, based on the students’ improvements, the AI can predict their grasping ability and accordingly plan and design the curriculum and assessments with difficulty levels, simplifying each student’s learning. 

18. Content, Image, And Video Creation For Lessons

Generative AI tools such as ChatGPT, Dall-e, and other AI-powered animating tools can help teachers create appealing and eye-catching lessons with plenty of simplified content, images, and videos for easy understanding of complex concepts to uplift learning experiences.

On top of it, teachers could use various materials from different textbooks and research publications and combine them into one to provide students with diverse knowledge.

19. Tutoring  

Students of all grades can interact with a chatbot or a virtual chatbot for tuition. The generative AI tool, ChatGPT, is a brilliant example that can explain the most difficult concepts to people of all ages. This way, students don’t have to rely on private tuition and can instead use chatbots as their tutors.

Banking 

20. Fraud Detection

Today, scams are everywhere, and these cyber criminals always develop new techniques to pull off fraudulent transactions. Generative AI can put an end to these activities with a tool to detect fraudulent transactions or any malicious activity within any account.

This could be done by training GAN and machine learning models with fraudulent sets of transactions so the AI can learn, detect and prevent these changing frauds.

21. Risk Management 

Using the generative AIs GAN models, banks can create scenarios such as loss with near real-life data. It’s nothing but predicting market forecasts to prepare for bitter market crashes and ready a plan to survive even in the volatility.

Legal 

22. Contract Generation And Compliance 

The generative AIs such as the ChatGPT can generate a legal contract based upon the criteria and terms on which involved parties agree. This saves time, effort, and money for everyone and streamlines processes between two parties to begin the execution of the contract early without any hassles.

Supply Chain

23. Supply Chain Management And Demand Forecasting

Generative AI models can help companies predict the demand for their products and accordingly plan their supply chain operations based on the number of customers, product type, and other parameters to bear the min loss or get the best business results. This helps companies reduce wastage and unnecessary spending on the supply chain and improve delivery time.

Travel and Tourism

24. Identity Verification

Generative AI has been used to generate images, manipulate their elements and change certain conditions. Similarly, generative AI can help in the identity verification of tourists in airports’ and everywhere. This is possible with GAN and machine learning modules that process the tourist’s ID image from different angles to verify that it is him.

25. Destination Recommendations 

The user can use generative AI tools such as ChatGPT to get the best destination recommendation based on their past journey, personal opinions, geographical location, and culture. This would allow them to spend the money on the right destination and bring back memorable experiences.

Looking to Hire a Top Generative AI Development Company? Find Out More

Final Words

There you go! The list of top generative AI use cases in 2023. The list includes general and industry-specific use cases to give you a better idea of how it’s helping sectors evolve and better serve humanity.

That being said, Generative AI is still in its infancy. But if we look at its track record, within a year, it reached a level no one expected, and it will, from here on, jump to a whole new level where we will soon see sectors advancing like never before, disrupting the entire human world. 

However, admiring how it’s evolving daily won’t bring you the ripest fruits. You must invest in this technology and get a generative AI built specifically for your business operations from a capable Generative AI Development Company to get the unimagined benefits. Because ready on not the battle to capture the market is on, there is no denying that generative AI will be everyone’s weapon of choice to do so.

FAQs

1. What are the use cases of Generative AI?

The use cases of generative AI go way beyond human comprehension, but for the time being, its best use cases are nothing but to generate data of any kind, from audio, video, text, and others. Apart from this, it also has industry-specific use cases such as gene sequencing in genetics research, generating creative fashion designs in the fashion industry, personalized lessons for students’ education, etc.

2. Is Generative AI the future?

Yes, generative AI is the new revolution that will dominate every sector to advance and accelerate their operations; for instance, it will be responsible for 30% of new drug discoveries and development in the pharmaceutical sector by 2025. This means we may finally have a cure for some chronic diseases.

3. What are the trends for Generative AI 2023?

Here are some trends of generative AI in 2023:

  • AI-assisted creativity
  • AI for advanced scientific research
  • NLP applications
  • AI-generated content for marketing
  • Advancements in GANs

4. What is the smartest AI 2023?

ChatGPT is the smartest AI of 2023 and then comes the rest, such as Deepmind (Alpha Go), Watson by IBM, Tesla autopilot, Sophia, etc.

By |2023-05-11T11:04:46+05:30May 8th, 2023|Generative AI|Comments Off on Top 25 Generative AI Use Cases in 2023

About the Author:

Avatar photo
Adarsh is a passionate content writer who loves exploring new technologies and innovations. With a knowledge of various technologies, he deeply understands how technology evolves and shapes our world. Driven by curiosity, Adarsh dives into the world of technology, always eager to discover the latest advancements. He enjoys sharing his knowledge and making complex concepts easy to understand for everyone. Through his articles, Adarsh aims to inspire and educate readers about the exciting world of technology. From AI and machine learning to blockchain and IoT, he covers a wide range of topics, making them accessible and relatable. Adarsh enjoys coding, exploring new tech gadgets, attending tech conferences, and reading sci-fi novels when he's not writing. He loves sharing his findings and insights with others, helping them see how technology can positively impact human lives. Read his article and join his journey to uncover the potential of technologies and understand how they transform our world.

Tell Us About Your Project